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The conditions for branching of the solutions of the equations of motion of natural mechanical systems in the complex time 
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The problem of the relation between the branching of the solutions in the complex time plane and the 
presence of nontrivial laws of conservation (often called first integrals or simply integral) goes back to 
the time of Painlev6. Golubev [1] related this problem to the classical investigations by Kovalevskaya, 
Lyapunov and Husson in rigid-body dynamics with a fixed point. The role of the branching solutions 
as an obstacle to integrability in the complex phase plane was investigated for the first time in [2], using 
the small Poincar6 parameter method. These problems were then related to the serf-intersection of the 
complex separatrices [3] and with the construction of a group of monodromic equations in variations 
[4]. Another approaclh is based on Lyapunov's method, developed for application to general quasi- 
homogeneous system,,; [5]. 

Below we establish a relation between the structure of the branching of the solutions as a function 
of the complex time and the number of momentum-polynomial integrals which enable the equations 
of dynamics to be employed. 

1. M A I N  R E S U L T S  

Suppose M n is the configuration space of a dynamic system, and p2n _- T*M is its 2n-dimensional phase 
space. We will denote the local coordinates in M by (xl . . . .  , xn) = x; let (Yl . . . .  , Yn) = Y be conjugate 
momenta (Cartesian coordinates in the linear spaces T'M). The variables (x, y) = z are coordinates in 
phase space P. 

Suppose 

1 n 
K(x,  y) = -~ ,~ lg i j (x )y iy  "= 

is the kinetic energy of the system considered (a positive definite quadratic form in T 'M)  and F = 
(Fl (X) , . . . ,  Fn(x)) is the force field (the eovector field in M). If the forces F are potential forces, we 
have 

Fi = -Ol-I l Oxi, l <~ i <~ n 

where II: M ~ ---) R is tile potential energy. 
The equations of motion have the following canonical form 

Jc i=bK/byi ,  y i = - b K l b x i + F i ;  l<~i<~n (1.1) 

In the case of potential forces they take the form of Hamilton differential equations with Hamiltonian 
H = K + H, which, of course, will be their integral. Equations (1.1) are invertible: they convert into 
one another with the involution t ---) -t, y ---) -y. 

tPrikl. Mat. Mekh. Vol. 6]!, No. 1, pp. 3-11, 1998. 



2 V.V. Kozlov 

All the known integrals of Eqs (1.1) are momentum polynomials (or functions of polynomials). The 
problem of the presence of polynomial integrals goes back to the time of Whittaker and Birkhoff [7]. 
Integrals that are linear in the momenta are related to hidden cyclic coordinates: after an appropriate 
replacement, one of the coordinates (say, xa) does not occur the kinetic energy K and the corresponding 
component of the force Fa is equal to zero; then the initial linear integral will be identical with the 
momentumyv The existence of integrals that are quadratic in the momenta is related to the possibility 
of separating the variables. The problem of polynomial integrals of powers greater than or equal to three, 
is considerably more complex. A review of the results in this field can be found in [8, Chapter VIII]. 

In this paper the Whittaker-Birkhoff problem is considered from a simpler complex point of view. 
It is assumed that the manifold M is provided with a complex structure, with respect to which K and 
F1, • • •, F~ are complex analytic functions in P and M, respectively. We will investigate the problem of 
the presence of integrals that are polynomial in Yl . . . . .  Yn with coefficients that are complex-analytic 
in M. Such integrals are often called single-valued polynomial integrals. 

We will first put F = 0. We will then have the problem of the geodesics of the Riemann metric K in 
M. It is well known (see, for example, [8]), that in this problem all the integrals can be assumed to be 
homogeneous polynomials iny: each homogeneous form of the expansion of the integral in a Maclaurin 
series in Yl ,  • • • ,  Yn will be an integral of the equations of the geodesics. The maximum number s of 
such independent homogeneous integrals will be called the degree of Birkhoff integrability of the 
problem of geodesics. The degree of integrability is closely related to the topology of the configuration 
space. Suppose, for example, that M 2 is a compact oriented connected manifold. If the genus of M is 
greater than unity, then s = 1 (the energy H = K is a unique non-trivial integral), and for a torus (a 
surface of the first genus) s ~< 2. On the other hand, the geodesic flow on a standard two-dimensional 
sphere has three independent integrals (hence, here s = 3). 

Suppose tI) : P ~ R is an analytic integral of the problem of geodesics. The derivative of O, by virtue 
of the canonical equations (1.1), is 

DO 
, = £ m F~, (1 .2)  ay, 

In the case of a potential force field 

= { o ,  n} ,  

where {., • } is the standard Poisson bracket. 
Suppose t ~ Zo(t) is one of the solutions of the shortened system (1.1), when Fi  = 0. In view of the 

assumption of analyticity, ZoO is a holomorphic function of the complex time t, that is single-valued 
on a certain Riemann surface ~ (fl is obtained as a result of the maximum analytic extension of its 
analytic element, the existence of which guarantees Cauchy's theorem). The composition t ---) il)(Zo(t)) 
is a holomorphic function on ~ or, in a certain subregion of it, if the components of the force F have 
singularities. Suppose ~, is a closed oriented curve on ~, in the neighbourhood of which the function t 

• (t) is holomorphic. 

T h e o r e m  1. If 

il~(Zo(t))dt ~ O, (1 .3)  

the complete system of equations (1.1) has solutions that are multivalued on 12. 
The branching property of the solutions means the following. By Cauchy's theorem, Eqs (1.1) have 

solutions which are holomorphic in the neighbourhood of the point to e 7, and when t = to they take a 
specified value from P. Theorem 1 asserts that among these solutions there are those analytic attenuation 
of which along the dosed path 7 leads to multivalued functions. 

Theorem 1 is convenient to use in practice when the general solution of the problem of geodesics is 
represented by meromorphic functions in the complex time plane. Then the Riemann surface f~ is the 
complex plane C = {t}, from which the poles of the meromorphic vector function t ---) Zo(t) a re  removed. 
Suppose the components of the force F have no singularities. Thenf(t) = il~(zo(t)) w i l l  be a meromorphic 
function. Theorem 1 asserts that iffhas at least one pole with non-zero residue, the solutions of system 
(1.1) will branch as a function of complex time. 
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One must, of course, bear in mind that in the general case i}(z(t)) ~ [~(z(t))], otherwise integral 
(1.3) will be equal to zero by the Newton-Leibnitz formula. 

The branching of the solutions is assumed to be related to the chaotic dynamics and the absence of 
integrals----conservation laws (see, for example, [9, 10]). However, not every branching is dangerous 
from the point of view of the property of integrability. 

The simplest example is a one-dimensional Hamiltonian system with Hamiltonian H = y2/2 + h(x) where h(x) 
is a polynomial of degree greater than or equal to five with simple roots. Almost all solutions are multivalued as 
functions of complex tinae, but the system allows of a polynomial integral H. 

Suppose s is the degree of Birkhoff integrability of the problem of geodesics of a Riemann manifold 
(M, K) and ~1, • • •, '~s is a set of independent integrals, homogeneous with respect to the momenta. 
More exactly, it is assumed that the gradients of these functions are linearly independent at least at one 
point of the phase trajectory t -~ Zo(t). Then, it turns out that they are independent at all points of this 
trajectory (see, for example, [4]). The mapping • : P ---> C ~, specified by the formula z ---> (Ol(z), • • . ,  
• ~(z)), is called a momentum mapping. 

We will calculate the derivative O(z) by virtue of the complete system (1.1) (from formula (1.2)) and 
then form the composition t --40(Zo(t)). As a result we obtain the vector function ~, which is holomorphic 
on the Riemann surface f~. 

Consider the natural homeomorphism 

Hl(f~, Z) ~ >C' 

specified by the formula 

y --~ ~ dp(Zo(t))dt (1.4) 
Y 

Here y are one-dimensional cycles on ~2; in view of the fact that ~ is holomorphic the integrals (1.4) 
over homologous cycles are identical. Suppose r is the rank of the group g(H1) as a system of vectors 
in C 5 (the maximum :aumber of linearly independent vectors from rffH1) over C). For example, if t}(.) 
is a meromorphie vector function on C, the rank r is equal to the maximum number of its linearly 
independent residue,~ (as vectors from C5). 

Theorem 2. We will assume that the system of equations (1.1) has k polynomial holomorphic integrals 
with independent leading homogeneous forms. Then 

k + r ~< s (1.5) 

It is easy to understand that the leading homogeneous forms of the integrals of system (1.1) are 
integrals of the prob]lem of geodesics (when F = 0). The assumption that they are independent can 
obviously be removed since, in all cases we know of, one can indicate k other polynomial integrals, in 
which the leading forms are independent almost everywhere. However, this assertion can only be proved 
in special cases. For example, when M is an n-dimensional toms, K = Za~v/ /2  is a non-degenerate 
quadratic form with constant coefficients [11]. Using Poincar6's method (see [8]), the assumption that 
the leading forms are: independent can also be removed when n - 1 polynomial integrals of Eqs (1.1) 
with independent leading homogeneous forms are known, and the problem consists of finding one other 
polynomial integral. ~llais situation certainly arises for Hamiltonian systems with two degrees of freedom: 
the energy integral H = K + FI acts as the known integral. 

Theorem 2 can be formulated particularly simply for conservative systems with two degrees of freedom 
(n = 2), the degree of integrability of which s is equal to two. Here the problem may arise of the existence 
of an additional polynomial integral, independent of the energy integral. Theorem 2 gives a simple 
condition for non-integrability in the complex sense 

S {~, l-l}(zo(t)) at • 0 (1.6) 
v 

Here • is the homogeneous integral of the geodesic problem. 
Condition (1.6) can usefully be compared with the well-known condition of real non-integrability 

[8, Chapter IV]: we must take as the solution of the "unperturbed" problem the doubly asymptotic 
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homoclinic solution, and the integration in (1.6) is carried out over the whole time axis R = (t}. If this 
improper integral is non-zero, the complete system does not allow of a real polynomial integral with 
analytic coefficients, independent of the energy integral. 

2. P R O O F  OF T H E O R E M S  1 AND 2 

We will introduce the small parameter e into Eq. (1.1) by means of the substitution 

x - , x ,  y ---> y l ~Fd, t --* ~-et 

Equations (1.1) will have the same form, except that the force F must be replaced by eaK When e = 0 
we will have the problem of inertial motion. The polynomial integrals of the momenta y become 
polynomials in the parameter e 

% ( z ,  = (2.D 

It is clear that W/will be leading homogeneous forms of the initial integrals [8, Chapter II]. These 
functions are independent by assumption. 

By Poincar6's theorem, the solutions of system (1.1) can be expanded in series in powers of e 

Z(t, E) = Zo(t)+eZt(t)+... (2.2) 

which converge for small values of e uniformly with respect to t from the neighbourhood of the closed 
curve y. 

We will prove Theorem 1. Suppose • is the integral of the unperturbed system. By (1.2) we 
have 

= e Y  w F~ ( 2 . 3 )  

If all the solutions of the perturbed system are single valued on ~ the value of the function tb as a 
function of time does not change after going round the closed contour Y. However, by (2.2) and (2.3) 
the increment of this function is equal to d + o(e), where I is the integral on the left-hand side of (1.4). 
Consequently, for small e g 0 solution (2.2) branches after analytic continuation along the closed curve 
y. This is what was required. 

We will now prove Theorem 2. Suppose to C P is the transform of the Riemann surface f~ for the 
mapping t ---> Zo(t). Since O1 . . . .  , Os comprise the maximum set of independent integrals of the 
unperturbed system, at each point 

~$ 
OVJ ~ 1 +  .+c j. s , l<~j<~k (2.4) 

~Z -- Cj'I ~----Z- "" OZ 

Since z0(-) is a solution, the coefficients cj are constant on to [8, Chapter IV]. Consequently 

3y i--I cj'i Oy 

and, in particular, 

fFj(Zo(t))dt = ~. cj,i~ ~i(Zo(t))dt, (2.5) 
y i 

Since (2.1) is a single-valued first integral of system (1.1), all the integrals on the left in (2.5) are equal 
to zero. Hence, by our assumption we obtain r linearly independent vectors 

= J ~ ( zo ( t ) )d t  
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such that C~ = 0, C ---- II Cy i11. But then rank C ~< s - r. By (2.4) the number of k linearly independent 
vectors 3Wj/Oz is equal to the rank of C and, consequently, inequality (1.5) holds: k ~< s - r. 

3. SOME APPL IC AT IONS 

3.1. We will consider the classical problem of the rotation of a heavy rigid body with a fixed point. 
The equations of motion allow of a Noethaer integral: the projection of the kinetic momentum on to 
the vertical is conserved~ Assuming this projection to be zero and factorizing the rotations around the 
vertical over the group, we reduce the problem to an inverse system with two degrees of freedom (n 
= 2), the configuration space of which is a two-dimensional sphere (a Poisson sphere). The reduction 
of the order has been discussed in detail (for example, [12, Chapter III]). 

If there are no forces we have an integrable Euler top. We know that if not all the principal moments 
of inertia coincide, for this problem s = 2 (incidentally, for the initial Euler system with three degrees 
of freedom s = 4). The solutions of the Euler problem are expressed in terms of O-functions of the 
time t and, consequently, are meromorphic functions of time in the complex plane C = {t} (see [6, 
Section 68]). If amo~ag the moments of inertia there are equal ones, the meromorphic functions 
degenerate into integer holomorphic functions of complex time. 

We will take as the homogeneous integral • of Euler's problem, independent of the kinetic energy, 
the square of the length of the kinetic momentum vector of the top, and we take as the solution z0(') 
a doubly asymptotic trajectory, which approaches without limit to constant rotations of the body around 
the average axis of ine.rtia in opposite directions. Of course, such solutions only exist for a dynamically 
asymmetrical body. The doubly asymptotic solution can be expressed in terms of elementary (but not 
elliptic) functions of time, and hence the further calculations are simplified considerably. 

We calculated [13] the value of the Poisson bracket 

{ O, FI }(z0(t)) (3.1) 

This meromorphic function always has poles with non-zero residues. So, by Theorem 2 the reduced 
equations of the rotation of a heavy dynamically asymmetrical top does not allow of a single-valued 
polynomial integral, independent of the energy integral. This result was obtained for the first time in 
[14] by another method and was developed by Ziglin [4, 13]. 

The doubly asymptotic solutions in the Euler problem are heteroclinic. Hence, to prove the real non- 
integrability of the insufficient condition that the integral of (3.1) along the axis R = {t} is non-zero, 
it is required that it should take different values on the family of doubly asymptotic trajectories [13]. 
This condition reduces to the fact that the sum of the poles of the meromorphic function (3.1) in a 
certain strip close to the real axis is non-zero. To prove the simpler fact of the complex non-integrability 
it is sufficient to have at least one non-zero residue. 

This example is of some historic interest: the classical results obtained by Kovalevskaya and Lyapunov on the 
single-valued solutions of the equations of the rotation of a heavy top led to the formulation of the general problem 
of the relation between the branching of the solutions of the equations of dynamics and the presence of single- 
valued integralsmthe laws of conservation (see [1, 8]). 

3.2. Suppose now that M is an n-dimensional toms, T n = {Xl . . . .  , Xn mod 2~}, the kinetic energy 

1 " " ( 3 . 2 )  T = -~ ~ gijxiXj 

is a non-degenerate quadratic form with constant coefficients, and the components of the force f 
are analytic on T n and are extended to meromorphic functions in the affme space of complex 
variables. The problem of the single-valued polynomial integrals of this system was considered previously 
in [15]. 

In view of the non-degeneracy of the form (3.2), the degree of Birkhoff integrability of the problem 
of geodesics is equal to n. The set of n independent polynomial integrals of the problem of geodesics 
are the momenta 

Yl . . . . .  Yn; Yj = ~T / ~.~j = ~ gjiki 
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Suppose 

x = at  + b, a, b ¢ C n, t ¢ C (3.3) 

is a straight line from C n, which specifies one of the inertial motions. We will assume that the limitations 
of the meromorphic functions F1 . . . . .  Fn on the straight line (3.3) are mesomorphic functions in the 
complex-time plane C = {t}. We will denote them by (fl . . . . .  fn) = f .  

By Theorem 1, if for certain a and b the function t ~ f ( t )  has a strip with non-zero residue, the general 
solution of  the system of equations 

xi = OH I Oy i, Yi = - O H  I Ox i + F/, 1 ~< i ~ n; H = 7~..,y (3.4) 

is branched in the plane C = {t}. 
Suppose that for certain a, b e C n, the function f has m poles, the residues in which are linearly 

independent on C, while system (3.4) allows of k single-valued independent momentum-polynomial 
integrals. Then, by Theorem 2, m + k ~< n. 

These assertions are proved in [15]. Theorems 1 and 2 are an extension of the results of [15] to reversi- 
ble analytic systems of  general form. Analogues of Theorems 1 and 2 for systems with configuration 
space S n were obtained in [16] by the same method. 

3.3. As an example, which shows the effectiveness of Theorem 2, we will prove the complex n6n- 
integrability of the problem of the sliding of  a point over an inclined ellipsoid of revolution (its axis of 
symmetry is not vertical). This result is new. 

Suppose 

(x 2 + y2)/a2 + z2/b 2 = 1 (3.5) 

is the equation of the ellipsoid of revolution and 1-I = Qoc + ~ (a,  ~ = const) is the potential energy 
of the gravitational force. If a = 0, the problem will be integrable: in addition to the energy, the angular 
momentum of the particle about the vertical is conserved 

O = x , ) - y k  (3.6) 

The equations of motion have the form 

J~=2Lr/a2-o~,  y = ~ . y / a  2, z = ~ . z l b 2 - ~  (3.7) 

Here ~ is a Lagrange multiplier; taking into account the connection equation (3.5) it can be represented 
in the form of an explicit function of it,y, ~ and x,y, z. 

Suppose a ,  b (otherwise we will have the well-known integrable problem of a spherical pendulum). 
Then s = 2 (if a = b, obviously s = 3). We will take as the homogeneous integral of  the problem of 
inertial motion the integral of  the moment (3.6). Taking Eqs (3.7) into account we obtain the formula 
4, = ay. 

We will introduce the natural parametrization of the surface of the ellipsoid (3.5) by the angular 
variables 

x = asin Osing, y = asin Ocos~0, z = bcosO (3.8) 

Consider the closed geodesic on (3.5), which corresponds to the meridional section x = 0 (or 
= 0). The variable 0 satisfies the obvious equation 

( a  2 c o s  2 0 + b 2 sin 2 0 ) 0  2 = h (3.9) 

where h is twice the kinetic energy. It is convenient to introduce the new variable u = cosO and to change 
to a new time x by the formula 

dt = (a 2 cos 2 0 + b 2 sin 20)dx (3.10) 

From (3.9) and (3.10) we obtain 
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du =d4, 4=b.qr/~x, k2=b2-a_...__.~ 2 
"~(1 - u 2 )(I - k2u 2) b2 

Consequently, u is the elliptic function of the variable 4 with modulus k ~ 0: u = sn (4, k). By (3.8) 
y = a cn 4. 

By Theorem 2, we must integrate the 1-form y(t)dt over the non-homologous zero cycle on the 
Riemann surface of the geodesic considered. After making the replacement t ---> x we obtain the 1-form 
y(t(x))t'dx. Apart from a non-zero factor, it has the explicit form 

cn 4 dn2 ~d4 

At the point 4 = iK'(Ig is the complete elliptic integral with additional modulus k' = (1 - k2) 1/2) we 
have a pole. Using the formulae ([17, Chapter 22]) 

i 2k 2 - 1 i4 + 0(43 ) 
cn(4+iK ' )=- -~  + 6k 

• i 2 - k  2 i4+0(4~) 
dn(4+iK ) = - ~ +  6 

we find the residue. It is equal to -//(2k) and, consequently, is non-zero. Hence, the problem of the 
motion of a heavy particle over an inclined ellipsoid does not, in fact, have an additional holomorphic 
integral in the form of a velocity polynomial. 

4. I R R E V E R S I B L E  SYSTEMS 

The results of Section 1 can be transferred to the more general case when additional gyroscopic forces 
~ ,  that are linear in the momenta, act on the system. The components of the matrix F = II ~/j II are 
assumed to be holomorphic functions on the complex manifold M ~. 

Suppose again that • is a set of s independent integrals of the problem of the inertial motion. The 
derivative (1.2) must be replaced by 

00  
* = ~  ~y/7ijYj (4.1) 

I, . /  

It can be shown that Theorems 1 and 2 remain true after (1.2) is replaced by (4.1). The proof uses the 
substitution 

x ->x ,  y->y/e ,  t--> et 

Equations (1.1) do not change their form but the forces acting on the system will have the form eFy + 
e2F. The momentum-polynomial integrals become polynomials in e. 

As an example we will consider the problem of the motion of a particle of unit mass over the ellipsoid (3.5), 
which rotates with constant angular velocity to around the y axis. Derivative (4.1) of integral (3.6) of the unperturbed 
problem has the form 

= -¢0y~ 

As in Section 3.3, we will consider the closed geodesic corresponding to the meridional section x = 0. If a ~ b, 
then, apart from an unimportant constant factor, the 1-form y:zdt has the explicit form 

cn 2 ~ dn ~d~ 

The integral of this form over a small circle surrounding the point/K' is non-zero. Consequently, when 
a g b, the problem in question does not allow of a single-valued polynomial integral independent of the energy 
integral. 
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